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XXX THIS IS A WORK IN PROGRESS XXX

This vignette requires functions in the FSA and FSAdata packages maintained by the author and the car

package available on CRAN. These packages are loaded into R with

> library(FSA)

> library(FSAdata)

> library(car)

1 Background

2 Maturity Data

Raw maturity data generally consists of a maturity statement (either “mature” or “immature”), size (length
or weight), age, sex, and other variables as needed (e.g., capture date, capture location) recorded for in-
dividual fish. The maturity variable may need to be derived from more specific data about the “stage of
maturation” recorded for each fish. Often, maturity will be recorded as a “0” for immature and a “1” for
mature, though this is not required for most modern softwares. Sex is an important variable to record as
maturity should be analyzed separately for each sex.

Summarized maturity data consists of the proportion of individuals that are mature within each age or length
category. Age categories are generally the recorded ages whereas recorded lengths are often categorized into
bins. Age or length categories should be as narrow as possible but include enough individuals such that the
proportion mature in each bin can be reasonably computed.

In this vignette, the length-related maturity schedules for female Yelloweye Rockfish ((Sebastes rubberimus)
collected from along the Oregon coast will be examined. These data can be found in YERockFish in the
FSAdata package and are loaded with

> data(YERockfish)

> str(YERockfish)

'data.frame': 158 obs. of 5 variables:

$ date : Factor w/ 71 levels "10/1/2003","10/2/2003",..: 66 9 38 25 60 6 37 48 34 39 ...

$ length : int 31 32 32 32 32 33 33 34 34 34 ...

$ age : int 10 6 11 11 13 9 10 8 10 11 ...

$ maturity: Factor w/ 2 levels "Immature","Mature": 1 1 1 1 1 1 1 1 1 1 ...

$ stage : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 2 2 1 1 1 1 1 ...

> view(YERockfish)

date length age maturity stage

26 6/16/2002 38 18 Mature 2

37 6/3/2002 40 15 Mature 3

50 10/25/2003 42 15 Mature 8

69 5/21/2001 44 20 Mature 6

144 7/28/2002 57 70 Mature 6

158 4/23/2001 70 66 Mature 4

Total length of the rockfish was measured to the nearest 1-cm. Length categories of 2-cm were chosen to
summarize the data as these length bins provide reasonable sample sizes (> 10 fish) in the length ranges
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where the proportion of mature fish is changing most rapidly (Figure 1). The 2-cm length categories are
added to the data frame with lencat() which requires a formula of the form ~len as the first argument
where len generically represents the length variable in the the original data frame, the name of the data
frame in data=, the size of the starting length category in startcat=, and the width of length categories in
w=. The result of lencat() is then saved to a dataframe. Adding the 2-cm length categories to the rockfish
data frame is accomplished with

> YERockfish <- lencat(~length,data=YERockfish,startcat=30,w=2)

> view(YERockfish)

date length age maturity stage LCat

13 7/17/2000 36 10 Immature 1 36

41 7/18/2000 41 11 Mature 2 40

65 6/11/2002 44 16 <NA> 2 44

119 10/7/2002 49 18 Mature 7 48

129 6/16/2002 52 30 Mature 6 52

156 8/18/2002 67 50 Mature 6 66

The frequency of mature and immature fish in each length category is computed with table() where the
“row” variable (should be the length category) is provide first. The result of table() should be saved to
an object name so that it can be submitted to prop.table() to compute the proportion of mature fish in
each length category. The “row” proportions are calculated, which will be the proportion within each length
category if the length categories were provided as rows in table(), by including margin=1 to prop.table().
The proportion of rockfish that are mature in each 2-cm length category is computed with (only the first six
rows are shown to save space)

> tblLen <- with(YERockfish,table(LCat,maturity))

> ptblLen <- prop.table(tblLen,margin=1)

> ptblLen[1:6,] # only 1st 6 rows to save space

maturity

LCat Immature Mature

30 1.0000 0.0000

32 1.0000 0.0000

34 1.0000 0.0000

36 0.5556 0.4444

38 0.6250 0.3750

40 0.3333 0.6667

A plot of the proportion of mature fish versus length category (Figure 1) is constructed with the following
code

> lens <- as.numeric(rownames(ptblLen))

> plot(ptblLen[,"Mature"]~lens,pch=16,xlab="Total Length (cm)",ylab="Proportion Mature")

3 Modeling with Raw Data

3.1 Fitting the Logistic Regression Model

Raw maturity data is generally summarized with a logistic regression. A logistic regression is conducted
with a binomial response variable and, generally, a quantitative explanatory variable. The logistic regression
would like to use typical general linear model theory to model the probability of “success” (p) by the value
of the explanatory variable. However, this relationship is generally not linear (primarily due to the constaint
that the probability is between 0 and 1). Thus, the logistic regression procedure must transform p to form
a linear equation. The required transformation is the so-called logit transformation,

2



30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total Length (cm)

P
ro

po
rt

io
n 

M
at

ur
e

Figure 1. Proportion of female Yelloweye Rockfish that were mature at each 2-cm length category.

logit(p) = log

(
p

1 − p

)
where 1 − p is the probability of “ failure.” In maturity analyses a “success” is defined as “being mature”
and a “failure” is defined as “being immature.” With this transformation a linear model is formed with

logit(p) = α+ β1X

or, more visually,

log

(
p

1 − p

)
= α+ β1X (1)

In maturity analyses, the explanatory variable, X, is often length or age such that the probability of being
mature is being modelled as a function of length or age.

The logistic regression is fit in R with the general linear model procedure, or glm(), with a formula of
the form factor~quantitative as the first argument followed by the data frame from which to extract
the variables in data=. The glm() function is quite general but it is forced to fit a logistic regression by
including the family=binomial argument. The results of the model fitting should be saved to an object so
that specific information can be extracted from that object. For example, submitting the saved glm() object
to coef() will produce estimates for the intercept and slope of the fitted model. The fit and extraction of
parameter estimates is illustrated with

> glm1 <- glm(maturity~length,data=YERockfish,family=binomial)

> coef(glm1)

(Intercept) length

-16.9483 0.4372

Confidence intervals for the parameters of the logistic regression are best estiamted via bootstrapping rather
than normal theory. The bootstrapping can be performed most easily with bootCase() from the car package.
This function requires the saved glm object as the first argument and the number of bootstrap samples to
construct in the B= argument. The number of bootstrap samples to take should be in the thousands. The
matrix of results from bootCase() should be saved to an object. The 95% bootstrap confidence interval
for a parameter is the values of the parameter estimate that have 2.5% of bootstrap samples smaller and
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larger (i.e., the 2.5% and 97.5% quantiles of the parameter estimates). These values are most easily found
by submitting the bootCase object to confint(). The bootstrapping and confidence interval extraction are
illustrated with

> bcL <- bootCase(glm1,B=100) # B should be nearer to 1000

> confint(bcL)

95% LCI 95% UCI

(Intercept) -25.2732 -12.2391

length 0.3295 0.6423

A predicted probability of “success” (i.e., being mature) at a given value of the explanatory variable is
computed with

p =
eα+β1x

1 + eα+β1
(2)

This prediction can be computed in R with predict(), which requires the saved glm object as the first
argument, a data frame with the values of the explanatory variable for which to make the prediction as
the second argument, and type="response" (which forces the prediction of the probability of being mature
rather than the logit). For example, the predicted probabilities of being mature for female Yelloweye Rockfish
that are 32- and 42-cm total length are computed with

> predict(glm1,data.frame(length=c(32,42)),type="response")

1 2

0.04933 0.80428

Confidence intervals for the predicted probability cannot be found simply as a prediction must be made
for each bootstrap sample and then values for the upper and lower 2.5% must be located. This can be
accomplished, however, by creating a function that represents (2) and then applying that function to each
row of the matrix containing the bootstrap samples. Applying this function to each row is accomplished
with apply() using the matrix of bootstrap samples as the first argument, the number “1” as the second
argument (denotes that the application is over the first margin of the matrix, or the rows), the prediction
function as the third argument, and the value of “x” at which to make the prediction as the last argument.
The result of apply() should be saved to an object so that the upper and lower 2.5% quantiles can be
extracted with quantile(). This process is illustrated for the predicted probability of being mature for
32-cm long Yelloweye Rockfish with

> predP <- function(cf,x) exp(cf[1]+cf[2]*x)/(1+exp(cf[1]+cf[2]*x))

> p32 <- apply(bcL,1,predP,x=32)

> quantile(p32,c(0.025,0.975))

2.5% 97.5%

0.007846 0.136294

Finally, one may construct a plot (Figure 2) showing the fitted logistic regression line with fitPlot() from
the FSA package. In this plot, the fitted logistic regression is shown by a red line, the individual data are
shown as gray-shaded dots where the darker the dot the more individuals plotted at that point, and the
proportion that are mature for several categories of the x-axis variable are shown by blue “pluses.” The
number of points that are plotted on top of each other before the point turns completely black is controlled
with the pt.trans= argument (larger numbers mean more points are needed to form a black dot). The
number of categories of the x-axis at which the proportion of “successes” is calculated is controlled by the
p.ints= argument (defaults to 25 levels). If p.ints=NULL is used then the proportions will be computed
at each individual value of the x-axis variable, which may be appropriate for age data but is likely not
appropriate for length data. Finally, the range of the x-axis variable can be controlled with the xlim=

argument. The fitted line plot shown in Figure 2 was constructed with
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> fitPlot(glm1,xlab="Total Length (cm)",ylab="Proportion Mature",main="",xlim=c(25,70))
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Figure 2. Fitted logistic regression for proportion of female Yelloweye Rockfish mature by total length.

3.2 Length or Age-at-Maturity

A common metric in fisheries science is to find the length or age at which a certain percentage of the fish are
mature. For example, it is common to ask “what is the length or age at which 50% of the fish have reached
maturity?” A general formula for computing this metric is found by solving (1) for X. This can be fairly
quickly shown to be

x =
log

(
p

1−p

)
− α

β1
(3)

In the common case of finding X for 50% maturity (i.e., p = 0.5), (3) reduces to the following simple formula

x = − α

β1
(4)

The age at which 50% of the fish are mature would be commonly symbolized as A50. Similarly, the length
at which 90% of the fish are mature would be L50.

These calculations are simplified by creating a function to perform (3) as follows

> lrPerc <- function(cf,p) (log(p/(1-p))-cf[1])/cf[2]

Thus, the lengths at which 50% and 90% of the female Yelloweye Rockfish are mature is computed with

> ( L50 <- lrPerc(coef(glm1),0.5) )

(Intercept)

38.77

> ( L90 <- lrPerc(coef(glm1),0.9) )

(Intercept)

43.79
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Confidence intervals for these values must also be constructed from the bootstrap sample results, as follows

> bL50 <- apply(bcL,1,lrPerc,p=0.5)

> ( L50ci <- quantile(bL50,c(0.025,0.975)) )

2.5% 97.5%

37.21 40.17

> bL90 <- apply(bcL,1,lrPerc,p=0.9)

> ( L90ci <- quantile(bL90,c(0.025,0.975)) )

2.5% 97.5%

41.7 45.9

A fitted line plot with the L50 illustrated is constructed as follows

> fitPlot(glm1,xlab="Total Length (cm)",ylab="Proportion Mature",main="",xlim=c(25,70),

plot.p=FALSE)

> lines(c(0,L50),c(0.5,0.5),lty=3,lwd=2,col="blue")

> lines(c(L50,L50),c(-0.2,0.5),lty=3,lwd=2,col="blue")
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Figure 3. Fitted logistic regression for proportion of female Yelloweye Rockfish mature by total length with
L50 shown.

4 Modeling with Summarized Data

It is also common to have the data in grouped or summarized format, where the proportion of “successes”
and “trials” for each value of the explanatory variable are provided. For example, part of the summarized
Yelloweye Rockfish data set (in a data frame called YER2) would look like that shown below

> YER2[1:10,]

length pmat n

31 31 0.00 1

32 32 0.00 4

33 33 0.00 2

34 34 0.00 3
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35 35 0.00 2

36 36 0.50 4

37 37 0.40 5

38 38 0.25 4

39 39 0.50 4

40 40 0.40 5

The appropriate logistic regression model can again be fit with glm() with the exception that the right-
hand-side of the formula is the proportion of “successes” variable and a weights= argument should be set
equal to the name of the sample size variable. This model is fit and the coefficients are extracted with the
code below where it can be seen that the results are the same as those found with the raw data.

> glm2 <- glm(pmat~length,data=YER2,family=binomial,weights=n)

> coef(glm2)

(Intercept) length

-16.9483 0.4372

All of the same post model fit functions can be used on this result as shown below.

> bcL2 <- bootCase(glm2,B=100)

> confint(bcL2)

95% LCI 95% UCI

(Intercept) -26.0311 -12.184

length 0.3174 0.667

> predict(glm1,data.frame(length=c(32,42)),type="response")

1 2

0.04933 0.80428

> p32a <- apply(bcL2,1,predP,x=32)

> quantile(p32a,c(0.025,0.975))

2.5% 97.5%

0.007408 0.114054

Finally, the fitted plot (Figure 4) can be constructed similarly though it is suggested that the plotting of
the proportion of “successess” for several categories of the explanatory variable (i.e., the “blue plussess” in
Figure 2) be “shut off” given that the raw data in this case is exactly that.

> fitPlot(glm2,xlab="Total Length (cm)",ylab="Proportion Mature",main="",xlim=c(25,70),

plot.p=FALSE)

5 Comparing Logistic Regressions Between Groups

It may be interesting to determine if the fit of the logistic regression differs between two groups. For example,
with the Yelloweye Rockfish example, there may be a reason (e.g., a management change) to determine if the
logistic regression differs between “pre-2002” and “post-2002.” To construct this analysis a factor variable
that represents the two groups needs to be computed. The code to construct this factor shown below is more
complicated than I would like because the original “date” variable was a factor.

> YERockfish$year <- as.numeric(format(as.POSIXct(YERockfish$date,format="%m/%d/%Y"),"%Y"))

> YERockfish$pre02 <- "Yes"

> YERockfish$pre02[YERockfish$year<2003] <- "No"

> YERockfish$pre02 <- factor(YERockfish$pre02)
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Figure 4. Fitted logistic regression for proportion of female Yelloweye Rockfish mature by total length
(computed from the summarized data frame).

The model required in this case is similar to what was done previously except that the left-hand-side of the
formula should contain the “covariate” “multiplied” by the factor variable that indicates the groups. With
this construct, the glm() will fit the “covariate” “main” effect, the factor “main” effect, and the interaction
between the “covariate” and the factor. In this case, the model is fith with

> glm3 <- glm(maturity~length*pre02,data=YERockfish,family=binomial)

Differences in the slope among the groups is determined by determining if the interaction variable is a
significant term in the model. If the interaction variable is insignificant (i.e., the lines are parallel) then
difference in intercepts among the groups is determined by determining if the factor variable is a significant
term in the model. The significance of these terms is obtained from the glm() result with drop1() using the
glm() object as the first argument, a formula of the form ~. as the second term, and using the test="Chisq"
argument. For example, the p-values for determining the signficance of these terms for the Yelloweye Rockfish
data are obtained with

> drop1(glm3,~.,test="Chisq")

Single term deletions

Model:

maturity ~ length * pre02

Df Deviance AIC LRT Pr(>Chi)

<none> 71.4 79.4

length 1 135.3 141.3 63.9 1.3e-15

pre02 1 71.9 77.9 0.5 0.49

length:pre02 1 72.1 78.1 0.7 0.41

From this it appears that the logistic regression models are parallel (p = 0.4115) with equal intercepts
(p = 0.4863), which indicates that there is no significant difference in the logistic regressions between the
pre- and post-2002 periods.

> ndf <- data.frame(length=c(32,42,32,42),pre02=c("Yes","Yes","No","No"))

> predict(glm3,ndf,type="response")

1 2 3 4

0.05299 0.69749 0.03539 0.86945
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> bcL3 <- bootCase(glm3,B=100)

> confint(bcL3)

95% LCI 95% UCI

(Intercept) -48.0124 -11.0865

length 0.2940 1.2003

pre021 -14.9954 21.3450

length:pre021 -0.4979 0.3875

Constructing a fitted line plot with the separate logistic regression models is a bit more work. First, extract
the coefficients from the fitted line, noticing that the “Pre02Yes” coefficient is the difference in intercepts
between the two groups and the “length:pre02Yes” coefficient is the difference in slopes between the two
groups

> (cf <- coef(glm3))

(Intercept) length pre021 length:pre021

-17.36633 0.44600 -2.58366 0.07414

Second, create a vector of total length values over which to evaluate the two models. Then predict the
probability of being mature for the “pre-02” and “post-02” groups.

> x <- seq(30,70,0.1)

> ppre <- exp(cf[1]+cf[2]*x)/(1+exp(cf[1]+cf[2]*x))

> ppost <- exp(cf[1]+cf[3]+(cf[2]+cf[4])*x)/(1+exp(cf[1]+cf[3]+(cf[2]+cf[4])*x))

Finally, plot the “pre-02” relationship before including the “post-02” relationship and a legend.

> plot(ppre~x,type="l",lwd=2,xlab="Total Length (cm)",ylab="Proportion Mature")

> lines(ppost~x,type="l",lwd=2,col="red")

> legend("bottomright",c("Pre-2002","Post-2002"),lwd=2,col=c("black","red"),bty="n")
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Figure 5. Fitted logistic regression for proportion of female Yelloweye Rockfish mature by total length
separated by the “pre-2002” and “post-2002” periods.

XXX Need more work to show how to predict with CIs for the two groups XXX

XXX Also need an example with some differences XXX
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