
fishR Vignette - Data Entry
Dr. Derek Ogle, Northland College March 2, 2013

Many fisheries biologists, when first learning to use R, struggle with how to “enter” their data into R.
In this vignette I will show how to port your data into R from tab-delimited, comma-separated values
(CSV), MSExcel (2007; .xlsx), MSExcel (pre-2007 .xls), MSAccess (2007), and MSAccess (pre-2007) files.
In addition, I will briefly mention how “pre-existing” data (not “your” data) can be loaded from existing R
packages. Finally, I will provide a brief tutorial on how to create subsets of your data once it is in R.

This vignette is not an exhaustive treatment of how to load data into R. I have simply tried to bring together
methods to handle what I see as the most common situations among fisheries students and professionals. It
should be noted that the R Project does provide a manual that describes the importing and exporting of
data. It should also be noted that I work primarily on a Windows-based machine and have not tested the
methods below on Unix- or Mac-based machines, though I have tried to comment where I think that what
is being described is Windows specific.

The code below relies on the FSA package maintained by the author as well as the XLConnect and RODBC

packages maintained by other authors. These packages are loaded with

> library(FSA)

> library(XLConnect)

> library(RODBC)

> library(reshape2)

1 The Data Files

Throughout this vignette, I will use a dataset of typical biological data from a population of ruffe (Gym-
nocephalus cernuus). These data contain the following variables measured on 40 ruffe captured in the St.
Louis River Harbor, Lake Superior in 2007:

� fishID: a unique fish identification number.

� locShort: name of the sampling location (all entries are St. Louis R. (2007)).

� year: year of capture.

� month: month of capture.

� day : day of capture.

� date: date of capture (this is redundant with the three previous variables but was included to illustrate
how date data are read into R).

� tl: total length (mm) (note: has missing data).

� wt: weight (g).

� sex: sex (female, male, or unknown).

� maturity : coarse maturity stage (immature or mature) (note: has missing data).

The first few lines of these data look like:

fishID locShort year month day date tl wt sex maturity

1 60 St. Louis R. (2007) 2007 9 20 9/20/2007 134 24.6 female mature

2 61 St. Louis R. (2007) 2007 9 20 9/20/2007 111 14.7 female mature

3 62 St. Louis R. (2007) 2007 9 20 9/20/2007 110 12.3 female immature

4 63 St. Louis R. (2007) 2007 9 20 9/20/2007 115 16.0 female mature

5 64 St. Louis R. (2007) 2007 9 20 9/20/2007 92 8.3 female mature

6 65 St. Louis R. (2007) 2007 9 20 9/20/2007 88 7.8 female mature

1

http://www.ncfaculty.net/dogle/
http://www.northland.edu
http://cran.r-project.org/doc/manuals/R-data.html
http://cran.r-project.org/doc/manuals/R-data.html

These data have been entered into a variety of formats for this vignette. These formats are as follows:

� MSAccess (2007): file called RuffeBio.accdb, table called dbRuffeBio, and query (which retrieves all
records from the dbRuffeBio table) called qryRuffeBio.

� MSAccess (2002-03): file called RuffeBio.mdb, same table and query names as above.

� MSAccess (2000): file called RuffeBio00.mdb, same table and query names as above.

� MSExcel (2007): file called RuffeBio.xlsx, sheet called Bio

� MSExcel (pre-2007): file called RuffeBio.xls, same sheet name as above.

� Tab-delimited text: file called RuffeBio.txt.

� Comma-separated-values: file called RuffeBio.csv.

All of these files contain the same data, are available on the FishR General Examples web page, and will be
used to illustrate the different methods for loading data into R in the following sections.

All functions illustrated below assume that you have changed the R working directory to the location that
holds your data files. The working directory can be set through the “File..Change Dir” menu item but I
prefer to set it using setwd(). For example, on my system, I set the working directory with

> setwd("c:/aaaWork/web/fishR/gnrlex/DataEntry")

Please note that you will have to change this to the directory containing the data files on YOUR system.
On a Windows machine you can use a dialog box to interactively select (through browsing dialog boxes) a
data file by including file.choose() in place of any of the file names shown below. For example (this will
make more sense after reading the ensuing sections), instead of

> txt.bio <- read.table("RuffeBio.txt",header=TRUE,sep="\t",na.strings="")

you could use

> txt.bio <- read.table(file.choose(),header=TRUE,sep="\t",na.strings="")

to interactively browse to where the data file is located. In this instance you would not have to worry about
setting the working directory with setwd(). In general, this interactive method should be avoided as it will
require the user to interact with the program whenever an R script is run, rather than having the script run
to completion without additional interaction by the user.

2 Reading Data Files in R Packages

In many texts and vignettes one will see data loaded into R with the data() function. This function is
used explicitly to load data files that are parts of R packages. For example, the SMBassWB from the FSA

package can be loaded with

> data(SMBassWB)

> str(SMBassWB)

'data.frame': 445 obs. of 20 variables:

$ species: Factor w/ 1 level "SMB": 1 1 1 1 1 1 1 1 1 1 ...

$ lake : Factor w/ 1 level "WB": 1 1 1 1 1 1 1 1 1 1 ...

2

http://www.ncfaculty.net/dogle/fishR/gnrlex/gnrlex.html

$ gear : Factor w/ 2 levels "E","T": 1 1 1 1 1 1 1 1 1 1 ...

$ yearcap: int 1988 1988 1988 1988 1988 1988 1989 1990 1990 1990 ...

$ fish : int 5 3 2 4 6 7 50 482 768 428 ...

$ agecap : int 1 1 1 1 1 1 1 1 1 1 ...

$ lencap : int 71 64 57 68 72 80 55 75 75 71 ...

$ anu1 : num 1.91 1.88 1.09 1.32 1.59 ...

$ anu2 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu3 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu4 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu5 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu6 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu7 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu8 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu9 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu10 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu11 : num NA NA NA NA NA NA NA NA NA NA ...

$ anu12 : num NA NA NA NA NA NA NA NA NA NA ...

$ radcap : num 1.91 1.88 1.1 1.33 1.59 ...

Of course, this is only useful for data that is likely not yours and is found in an R package.

3 Reading from Text Files

Tab-delimited text files can be read into R with read.table(). The read.table() function requires only
one argument – the name of the file in quotes. However, if the first row of the data file contains the
variable names, as RuffeBio.txt does, then R must be told so with the header=TRUE argument. By default,
read.table() simply looks for fields that are separated by “white space” whether that be a space, multiple
spaces, or a tab. There are at least two problems with this approach. First, if the file contains missing cells
then those missing cells appear as spaces in the file and read.table() will lump those spaces with the tabs
before and after the missing field to make it look like a single field delimiter. In this case, read.table() will
return an error saying “line XX did not have YY elements”. Second, if any one of the field entries contains
spaces then each “word” in that field will be incorrectly considered as a separate field. For example, the
locShort field contains the text “St. Louis R. (2007)”. The default read.table() will treat this single entry
as four entries and will result in an error saying “more columns than column names”. The easiest way to
address these errors is to force read.table() to delimit fields with tabs by using the sep="�" argument.
Additionally, one can identify a string that when read is considered to be a missing value. The default
behavior of read.table() is to consider NA as a missing value. However, it is more common that missing
values will truly be missing and, in this case, one should use na.strings="". Thus, RuffeBio.txt can be
loaded into R, the date variable format converted1, and the data frame structure observed with

> txt.bio <- read.table("RuffeBio.txt",header=TRUE,sep="\t",na.strings="")
> txt.bio$date <- as.POSIXct(strptime(txt.bio$date,"%m/%d/%Y",tz=""))

> str(txt.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : int 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: Factor w/ 1 level "St. Louis R. (2007)": 1 1 1 1 1 1 1 1 1 1 ...

$ year : int 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

$ month : int 9 9 9 9 9 9 9 9 9 9 ...

$ day : int 20 20 20 20 20 20 20 20 20 20 ...

$ date : POSIXct, format: "2007-09-20" "2007-09-20" ...

1The second argument in strptime shows the format of the dates in the xls.bio$date input object (%m says the month is
first, %d says the day is second, and %Y says that the four digit year is last) and the tz="" argument tells strptime() to ignore
the time zone of the date.

3

$ tl : int 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : Factor w/ 3 levels "female","male",..: 1 1 1 1 1 1 1 1 1 1 ...

$ maturity: Factor w/ 2 levels "immature","mature": 2 2 1 2 2 2 2 2 2 2 ...

Comma-separated-values (CSV) files are text files where each field is separated by commas. Commas-
separated-values files can be loaded into R with read.csv() with the only required argument being the
name of the data file in quotes. It should also be noted that read.csv(), in contrast to read.table(),
defaults to using header=TRUE. Thus, RuffeBio.csv is loaded into R and the data variable format is converted
with

> csv.bio <- read.csv("RuffeBio.csv",na.strings="")

> csv.bio$date <- as.POSIXct(strptime(csv.bio$date,"%m/%d/%Y",tz=""))

> str(csv.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : int 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: Factor w/ 1 level "St. Louis R. (2007)": 1 1 1 1 1 1 1 1 1 1 ...

$ year : int 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

$ month : int 9 9 9 9 9 9 9 9 9 9 ...

$ day : int 20 20 20 20 20 20 20 20 20 20 ...

$ date : POSIXct, format: "2007-09-20" "2007-09-20" ...

$ tl : int 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : Factor w/ 3 levels "female","male",..: 1 1 1 1 1 1 1 1 1 1 ...

$ maturity: Factor w/ 2 levels "immature","mature": 2 2 1 2 2 2 2 2 2 2 ...

4 Reading from Excel Files

4.1 using XLConnect

The XLConnect package provides useful and flexible functions for reading from and writing to Excel files.
In this section, I will describe only simple methods of reading data from Excel files. The excellent demo
vignette provided with the XLConnect package should be consulted for more advanced uses.

The Excel file, or workbook, must first be “loaded” into R before specific worksheets can be read from
it. This is accomplished by providing the name of the file in the first argument of loadWorkbook(). It is
important to save the results of this function to an object. For example, the Excel 2007 example file is loaded
with

> x07.wb <- loadWorkbook("RuffeBio.xlsx") # Excel 2007

Once a file is loaded into R, a worksheet inside that file can be read with readWorksheet(). This function
requires the loadWorkbook object as the first argument and the name of worksheet to be read in quotes
in the sheet= argument. Thus, the Bio worksheet from the RuffeBio.xlsx file is read and the structure is
obsered with

> x07.bio <- readWorksheet(x07.wb,sheet="Bio")

> str(x07.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : num 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: chr "St. Louis R. (2007)" "St. Louis R. (2007)" "St. Louis R. (2007)" "St. Louis R. (2007)" ...

4

$ year : num 2007 2007 2007 2007 2007 ...

$ month : num 9 9 9 9 9 9 9 9 9 9 ...

$ day : num 20 20 20 20 20 20 20 20 20 20 ...

$ date : chr "9/20/2007" "9/20/2007" "9/20/2007" "9/20/2007" ...

$ tl : num 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : chr "female" "female" "female" "female" ...

$ maturity: chr "mature" "mature" "immature" "mature" ...

It is seen that readWorkseet() does not convert character strings to factors as read.table() does. The date
variable can be converted to a proper date format as shown previously. The other variables can be converted
to factor variables with factor(). However, after doing so it will be apparent that the “missing data” in
the maturity variable will be treated as a level. To rectify this, the missing values should be converted to
NAs before factoring. All of these conversions are illustrated with

> x07.bio$date <- as.POSIXct(strptime(x07.bio$date,"%m/%d/%Y",tz=""))

> x07.bio$locShort <- factor(x07.bio$locShort)

> x07.bio$sex <- factor(x07.bio$sex)

> x07.bio$maturity[x07.bio$maturity==""] <- NA

> x07.bio$maturity <- factor(x07.bio$maturity,exclude="")

> str(x07.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : num 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: Factor w/ 1 level "St. Louis R. (2007)": 1 1 1 1 1 1 1 1 1 1 ...

$ year : num 2007 2007 2007 2007 2007 ...

$ month : num 9 9 9 9 9 9 9 9 9 9 ...

$ day : num 20 20 20 20 20 20 20 20 20 20 ...

$ date : POSIXct, format: "2007-09-20" "2007-09-20" ...

$ tl : num 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : Factor w/ 3 levels "female","male",..: 1 1 1 1 1 1 1 1 1 1 ...

$ maturity: Factor w/ 3 levels "immature","mature",..: 2 2 1 2 2 2 2 2 2 2 ...

With these changes, this file matches the tab-delimited text file read previously with the exception that some
variables are recorded as “numerical” rather than “integer.”

A similar process is followed for pre-2007 versions of Excel (demonstrated in the next paragraph).

Some Excel data files do not so strictly resemble a database table (i.e., they don’t have variable names in the
first row, data starting in the second row after the labels, very few missing fields, etc.) as the RuffeBio.xls
file does. For example, the RuffeBio2.xls file has variable names that start in the fourth row, a non-data
title in the first cell (i.e., A1), and tl and maturity variables that have missing values in the first 26 rows.
These types of files can be adequately read with readWorksheet() using the startRow= argument to identify
which row to start reading from2. For example, the RuffeBio2.xls is read with

> xodd.wb <- loadWorkbook("RuffeBio2.xls")

> xodd.bio <- readWorksheet(xodd.wb,sheet="Bio",startRow=4)

> str(xodd.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : num 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: chr "St. Louis R. (2007)" "St. Louis R. (2007)" "St. Louis R. (2007)" "St. Louis R. (2007)" ...

$ year : num 2007 2007 2007 2007 2007 ...

2Also note that there are endRow=, startCol=, and endCol= arguments if one must read a range of data that does not start
in the upper-right cell of the worksheet.

5

$ month : num 9 9 9 9 9 9 9 9 9 9 ...

$ day : num 20 20 20 20 20 20 20 20 20 20 ...

$ date : chr "9/20/2007" "9/20/2007" "9/20/2007" "9/20/2007" ...

$ tl : num NA NA NA NA NA NA NA NA NA NA ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : chr "female" "female" "female" "female" ...

$ maturity: chr NA NA NA NA ...

4.2 Using RODBC

The RODBC packag provides functions for which a user can import data directly from external files, including
Excel and Access, into R. With the advent of 64-bit versions of R, Microsoft products, and computers, one
has to be much more careful using the RODBC functions than previously. In particular, one must make sure
that your workflow is using the same architecture for R as it is for the Microsoft products if one is going to
successfully read directly from those products into R. In other words, R and Microsoft Office both either
need to be 32-bit or 64-bit, but not a mixture of both (e.g., you can’t use 64-bit R with 32-bit Office). One
can determine their version of R with version, or more directly with version$platform as such,

> version$platform

[1] "i386-w64-mingw32"

If one sees “i386” and “mingw32” in this then you are using the 32-bit version of R. The version of your
Microsoft Office product can generally be found in the “Help..About” or “File .. Help” information. For
example, on my current machine, I am using a 32-bit version of Office (see the lower-right highlighted item
below)

Thus, I should be able to successfully use RODBC as described below because both my R and Microsoft Office
are using the 32-bit architecture.

Reading data from Excel using the RODBC package is very similar to what was described above for using
XLConnect. First, a connection to the Excel file must be created with either odbcConnectExcel2007() for
Excel (2007) files or odbcConnectExcel() for pre-Excel (2007) files. For example,

6

> x07.con <- odbcConnectExcel2007("RuffeBio.xlsx") # Excel 2007

> ## xls.con <- odbcConnectExcel("RuffeBio.xls") # pre-Excel 2007

The worksheet in one of these files is then “fetched” with sqlFetch() which requires two arguments. The
first argument is the saved “connection” name that was just created. The second argument is the name, in
quotes, of the worksheet on the connected Excel file that contains the data to be fetched. Also, notice that
true missing values will be considered as R missing values (i.e., as NAs) when na.strings="" is used. For
example, the worksheet named “Bio” in the Excel (2007) file is fetched and the structure is obsered with

> x07.bio2 <- sqlFetch(x07.con,"Bio",na.strings="")

> str(x07.bio2)

'data.frame': 40 obs. of 10 variables:

$ fishID : num 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: Factor w/ 1 level "St. Louis R. (2007)": 1 1 1 1 1 1 1 1 1 1 ...

$ year : num 2007 2007 2007 2007 2007 ...

$ month : num 9 9 9 9 9 9 9 9 9 9 ...

$ day : num 20 20 20 20 20 20 20 20 20 20 ...

$ date : Factor w/ 1 level "9/20/2007": 1 1 1 1 1 1 1 1 1 1 ...

$ tl : num 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : Factor w/ 3 levels "female","male",..: 1 1 1 1 1 1 1 1 1 1 ...

$ maturity: Factor w/ 2 levels "immature","mature": 2 2 1 2 2 2 2 2 2 2 ...

It is seen that RODBC reads the date variable as a factor rather than a character or POSIXct object. This
conversion is accomplished as preiously with

> x07.bio2$date <- as.POSIXct(strptime(x07.bio2$date,"%m/%d/%Y",tz=""))

Similar steps are used to read from the Excel (pre-2007) file (making sure to use the xls.con connection
from above). All connections should be closed when you are done fetching data through them. This is
accomplished with odbcClose() as shown below

> odbcClose(x07.con)

> ## odbcClose(xls.con)

The RODBC method can NOT be reliably used for Excel files that do not closely look like a database table
(e.g., like RuffeBio2.xls). For example, examine the structure of the data frame produced with

> xls2.con <- odbcConnectExcel("RuffeBio2.xls")

> xls2.bio <- sqlFetch(xls2.con,"Bio",na.string="")

> str(xls2.bio)

'data.frame': 43 obs. of 10 variables:

$ Example of an odd-shaped Excel file: num NA NA NA 60 61 62 63 64 65 66 ...

$ F2 : Factor w/ 2 levels "locShort","St. Louis R. (2007)": NA NA 1 2 2 2 2 2 2 2 ...

$ F3 : num NA NA NA 2007 2007 ...

$ F4 : num NA NA NA 9 9 9 9 9 9 9 ...

$ F5 : num NA NA NA 20 20 20 20 20 20 20 ...

$ F6 : Factor w/ 2 levels "9/20/2007","date": NA NA 2 1 1 1 1 1 1 1 ...

$ F7 : Factor w/ 1 level "tl": NA NA 1 NA NA NA NA NA NA NA ...

$ F8 : num NA NA NA 24.6 14.7 12.3 16 8.3 7.8 9.7 ...

$ F9 : Factor w/ 4 levels "female","male",..: NA NA 3 1 1 1 1 1 1 1 ...

$ F10 : Factor w/ 3 levels "immature","mature",..: NA NA 3 NA NA NA NA NA NA NA ...

> odbcClose(xls2.con)

7

5 Access

The RODBC package can also be used to directly port from Access to R. The functions are very similar to
those described for Excel in Section 4.2. In addition, if you did not read Section 4.2, then you should go
there now to read the discussion and warning related to the 32- and 64-bit architectures of R and Microsoft
Office.

A channel of communication must first be opened between R and the application which holds the data using
one of odbcConnectAccess2007() for Access (2007) files or odbcConnectAccess() for pre-Access (2007)
files. Each of these is shown below, though, of course, you would only use one of these commands that was
specific to the data file you wish to use.

> a07.con <- odbcConnectAccess2007("RuffeBio.accdb") # Access 2007

> ## a03.con <- odbcConnectAccess("RuffeBio.mdb") # Access 2003

> ## a00.con <- odbcConnectAccess("RuffeBio00.mdb") # Access 2000

Once the connection to the data file has been created then the data is “fetched” with sqlFetch() where the
first argument is the name of the connection created above and the second argument is the name, in quotes,
of the object (table or query) in Access that contains the data to be fetched. If the database is protected
with a user ID and password then the user ID can be passed in the UID= and the password passed in the
pwd= optional arguments. For example, the data stored in the Access (2007) file is fetched and the structure
observed with

> a07d.bio <- sqlFetch(a07.con,"dbRuffeBio",na.strings="")

> str(a07d.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : num 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: Factor w/ 1 level "St. Louis R. (2007)": 1 1 1 1 1 1 1 1 1 1 ...

$ year : num 2007 2007 2007 2007 2007 ...

$ month : num 9 9 9 9 9 9 9 9 9 9 ...

$ day : num 20 20 20 20 20 20 20 20 20 20 ...

$ date : POSIXct, format: "2007-09-20" "2007-09-20" ...

$ tl : num 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : Factor w/ 3 levels "female","male",..: 1 1 1 1 1 1 1 1 1 1 ...

$ maturity: Factor w/ 2 levels "immature","mature": 2 2 1 2 2 2 2 2 2 2 ...

The data can be read from the query in the Access (2007) file in a similar manner with

> a07q.bio <- sqlFetch(a07.con,"qryRuffeBio",na.string="")

> str(a07q.bio)

'data.frame': 40 obs. of 10 variables:

$ fishID : num 60 61 62 63 64 65 66 67 68 69 ...

$ locShort: Factor w/ 1 level "St. Louis R. (2007)": 1 1 1 1 1 1 1 1 1 1 ...

$ year : num 2007 2007 2007 2007 2007 ...

$ month : num 9 9 9 9 9 9 9 9 9 9 ...

$ day : num 20 20 20 20 20 20 20 20 20 20 ...

$ date : POSIXct, format: "2007-09-20" "2007-09-20" ...

$ tl : num 134 111 110 115 92 88 95 90 99 107 ...

$ wt : num 24.6 14.7 12.3 16 8.3 7.8 9.7 8.2 11.7 13 ...

$ sex : Factor w/ 3 levels "female","male",..: 1 1 1 1 1 1 1 1 1 1 ...

$ maturity: Factor w/ 2 levels "immature","mature": 2 2 1 2 2 2 2 2 2 2 ...

Similar commands can be used to read from the Access (2003) and Access (2000) files (simply making sure
to use the correct connection created above). All connections should be closed when you are done fetching
data through them with

8

> odbcClose(a07.con)

> ## odbcClose(a03.con)

> ## odbcClose(a00.con)

6 Final Comments on Reading Data into R

My recommendation is to keep your data in its native format if at all possible. By this I mean if your
data is in Access then keep it in Access rather than converting it to Excel, a CSV, or a tab-delimited text
file. Similarly, if your data is in Excel then try to read it from Excel rather than converting to CSV or
tab-delimited text file. I make this recommendation primarily because it will be much easier on you if you
have to modify the data file and re-read it into R. For example, if you data is in Access but you converted
it to a text file, then, if you modify the Access file, you will have to make sure to save a new version of the
text file. In contrast, if you are reading directly from the Access file then you simply need to re-read the
modified file.

I have focused this presentation on reading data from Microsoft products not because I want to promote
Microsoft products but because most questions that I receive are related to these products. As an open-
source product, R contains other functions for reading data from Oracle files (see ROracle), mySQL files (see
RMySQL), and Open Office Base files (see ODB).

7 Creating Subsets of Data Frames

It is common that a researcher will want to examine a subset of a larger data frame – e.g., examine just
male ruffe. Base R provides subset() for creating subsets of data frames. For example, the male ruffe can
be extracted from any of the previous data frames with (the details will be explained later)

> r.male <- subset(txt.bio,sex=="male")

and a frequency table of sex constructed with

> table(r.male$sex)

female male unknown

0 8 0

It is immediately obvious from this table that subset() does indeed extract just the males, but the sex
variable still contains the “female” and “unknown” level names. This produces tables (and graphs) that are
“ugly.” There are a variety of methods for correcting this problem but the easiest is to use Subset() from
the FSA package.

The Subset() function requires the original data frame as the first argument and a conditioning statement
as the second argument. The conditioning statement is a statement that is used to either include or exclude
the individuals from the original data frame that will make up the new data frame. The result from Subset()

should be stored in a new object which will then be a new data frame. The conditioning statements used in
Subset() can be fairly complex (Table 1).

As an example, the subset of just male ruffe is found using Subset(), with a table of the result shown to
demonstrate that the “female” level name has indeed been removed, with

> r.male <- Subset(txt.bio,sex=="male")

> table(r.male$sex)

9

http://cran.r-project.org/web/packages/ROracle/index.html
http://cran.r-project.org/web/packages/RMySQL/
http://cran.r-project.org/web/packages/ODB/index.html

Table 1. Condition operators used in Subset() and their results. Note that variable generically represents
a variable in the original data frame and value is a generic value or level. Both of these would be replaced
with specific items.

Comparison
Operator Individuals Returned from Original Data Frame

variable == value all individual equal to given value

variable ! = value all individuals NOT equal to given value

variable > value all individuals greater than given value

variable >= value all individuals greater than or equal to given value

variable < value all individuals less than given value

variable <= value all individuals less than given value

condition & condition all individuals that meet both conditions

condition | condition all individuals that meet one or both conditions

male

8

The following items are examples of new data frames created by subsetting the txt.bio data frame3.

� A data frame that contains only males.

> r.male <- Subset(txt.bio,sex=="male")

> view(r.male)

fishID locShort year month day date tl wt sex maturity

18 77 St. Louis R. (2007) 2007 9 20 2007-09-20 NA 13.1 male mature

27 86 St. Louis R. (2007) 2007 9 20 2007-09-20 84 5.7 male mature

28 87 St. Louis R. (2007) 2007 9 20 2007-09-20 105 11.7 male mature

32 91 St. Louis R. (2007) 2007 9 20 2007-09-20 99 9.1 male mature

36 95 St. Louis R. (2007) 2007 9 20 2007-09-20 81 5.8 male mature

39 98 St. Louis R. (2007) 2007 9 20 2007-09-20 NA 10.5 male mature

� A data frame that contains male and females (but not unknown sex individuals).

> r.fm1 <- Subset(txt.bio,sex=="male" | sex=="female") # male OR female

> view(r.fm1)

fishID locShort year month day date tl wt sex maturity

1 60 St. Louis R. (2007) 2007 9 20 2007-09-20 134 24.6 female mature

2 61 St. Louis R. (2007) 2007 9 20 2007-09-20 111 14.7 female mature

5 64 St. Louis R. (2007) 2007 9 20 2007-09-20 92 8.3 female mature

8 67 St. Louis R. (2007) 2007 9 20 2007-09-20 90 8.2 female mature

19 78 St. Louis R. (2007) 2007 9 20 2007-09-20 56 2.3 female immature

23 82 St. Louis R. (2007) 2007 9 20 2007-09-20 110 14.4 female mature

> r.fm2 <- Subset(txt.bio,sex!="unknown") # exclude unknowns

> view(r.fm2)

fishID locShort year month day date tl wt sex maturity

6 65 St. Louis R. (2007) 2007 9 20 2007-09-20 88 7.8 female mature

8 67 St. Louis R. (2007) 2007 9 20 2007-09-20 90 8.2 female mature

15 74 St. Louis R. (2007) 2007 9 20 2007-09-20 90 7.6 female mature

3The view() function is used in the examples below to show a random selection of six rows from the new data frame.

10

17 76 St. Louis R. (2007) 2007 9 20 2007-09-20 114 12.4 female mature

31 90 St. Louis R. (2007) 2007 9 20 2007-09-20 102 9.5 female mature

39 98 St. Louis R. (2007) 2007 9 20 2007-09-20 NA 10.5 male mature

> r.fm3 <- Subset(txt.bio,sex%in%c("male","female"))

> view(r.fm3)

fishID locShort year month day date tl wt sex maturity

2 61 St. Louis R. (2007) 2007 9 20 2007-09-20 111 14.7 female mature

4 63 St. Louis R. (2007) 2007 9 20 2007-09-20 115 16.0 female mature

13 72 St. Louis R. (2007) 2007 9 20 2007-09-20 102 11.4 female mature

15 74 St. Louis R. (2007) 2007 9 20 2007-09-20 90 7.6 female mature

29 88 St. Louis R. (2007) 2007 9 20 2007-09-20 120 18.6 female mature

39 98 St. Louis R. (2007) 2007 9 20 2007-09-20 NA 10.5 male mature

� A data frame that contains individuals with a total length greater than 80 mm.

> r.gt80 <- Subset(txt.bio,tl>80)

> view(r.gt80)

fishID locShort year month day date tl wt sex maturity

6 65 St. Louis R. (2007) 2007 9 20 2007-09-20 88 7.8 female mature

8 67 St. Louis R. (2007) 2007 9 20 2007-09-20 90 8.2 female mature

16 75 St. Louis R. (2007) 2007 9 20 2007-09-20 102 11.2 female mature

28 87 St. Louis R. (2007) 2007 9 20 2007-09-20 105 11.7 male mature

35 94 St. Louis R. (2007) 2007 9 20 2007-09-20 81 5.8 female mature

36 95 St. Louis R. (2007) 2007 9 20 2007-09-20 81 5.8 male mature

� A data frame that contains males with a total length greater than 80 mm.

> r.mgt80 <- Subset(txt.bio,sex=="male" & tl>80)

> view(r.mgt80)

fishID locShort year month day date tl wt sex maturity

27 86 St. Louis R. (2007) 2007 9 20 2007-09-20 84 5.7 male mature

28 87 St. Louis R. (2007) 2007 9 20 2007-09-20 105 11.7 male mature

32 91 St. Louis R. (2007) 2007 9 20 2007-09-20 99 9.1 male mature

33 92 St. Louis R. (2007) 2007 9 20 2007-09-20 84 5.6 male mature

34 93 St. Louis R. (2007) 2007 9 20 2007-09-20 87 7.6 male mature

36 95 St. Louis R. (2007) 2007 9 20 2007-09-20 81 5.8 male mature

Note that after each subsetting you should get in the habit of either typing the name of the new data frame
to see all of the resulting data, using head() or view() to examined a subsample of rows from the new data
frame, or using str() to examine the structure of the new data frame. While this practice is not required,
it is highly recommended as a way to determine if the new data frame actually contains the items that you
desire.

8 Changing “Directions” of the Data

Suppose you have data that consists of the counts of several species of fish from several sets of nets. These
type of data may be entered in one of two formats. In the so-called “wide” format, each row of the data
frame would consist of one net set and there would be multiple columns corresponding to each species of
fish. This type of data would look like this

11

net eff temp BKT LKT RBT

1 1 1 17.0 17 45 14

2 2 1 17.3 5 0 13

3 3 1 17.2 0 17 17

where net is a net identification number; BKT, LKT, and RBT represent the various species of fish captured;
and eff and temp are “effort” and water temperature, respectively, and are meant to illustrate the type of
“net-specific” data that might be collected in addition to the catch of individual species. In so-called “long”
format each row does NOT correspond to a net, rather each row corresponds to a net-species combination.
Thus, in long format the catches of all species in one net are distributed across several rows. The same data
shown above in wide format is shown below in long format

net eff temp species catch

1 1 1 17.0 BKT 17

2 2 1 17.3 BKT 5

3 3 1 17.2 BKT 0

4 1 1 17.0 LKT 45

5 2 1 17.3 LKT 0

6 3 1 17.2 LKT 17

7 1 1 17.0 RBT 14

8 2 1 17.3 RBT 13

9 3 1 17.2 RBT 17

It is fairly common to need to convert data in “long” format to that in “wide” format or vice versa. Methods
for making these changes are described in the following subsections. For all examples below, suppose that
the wide data above is stored in dfw and the long data above is stored in dfl.

8.1 Using reshape() from Base R

The reshape() function in base R can be used to convert between the two formats. In either conversion,
the first argument to reshape() is the name of the data frame to be reshaped. The direction= argument
can be set either to "wide" or "long" depending on the desired direction of the RESULTING data frame.
To convert from wide to long format one would also use the following arguments:

� idvar=: The variable in wide format that represents the individuals or unit of measurements.

� varying=: The variable(s) in wide format that represent the “multiple measurements” on the individ-
uals. These variables will ultimately be stacked into a single variable in the resulting long format.

� v.names=: This is a name for the new variable in the long format that is to be constructed from the
varying= variables from the wide format.

� timevar=: This is a name for the new variable in the long format that is constructed so as to keep
track of the original “group” of the multiple measurements from the wide format.

� times=: This is a vector of the “group” names to be used in the variable declared in timevar=. Often
times this will be very closely related to the names given in varying=.

It should be noted that the variables not listed in idvar= or varying= will essentially be treated as constant
variables that are closely linked to the variable in idvar=. Thus, the data shown above in wide format can
be converted to long format with

> (dfL <- reshape(dfw,direction="long",idvar="net",

varying=c("BKT","LKT","RBT"),v.names="catch",

timevar="species",times=c("BKT","LKT","RBT")))

12

net eff temp species catch

1.BKT 1 1 17.0 BKT 17

2.BKT 2 1 17.3 BKT 5

3.BKT 3 1 17.2 BKT 0

1.LKT 1 1 17.0 LKT 45

2.LKT 2 1 17.3 LKT 0

3.LKT 3 1 17.2 LKT 17

1.RBT 1 1 17.0 RBT 14

2.RBT 2 1 17.3 RBT 13

3.RBT 3 1 17.2 RBT 17

The same function can also be used to convert from long to wide format. In this case, the following arguments
are used

� idvar=: The variable in long format that represents the individuals or unit of measurements.

� v.names=: The variable in long format that represents the multiple measurements.

� timevar=: The variable in long format that represents the variable that identifies the “groups” on
which the multiple measurements were made.

The variables not listed in idvar=, v.names=, or timevar= will be treated as constant variables that are
closely linked to the variable in idvar=. Thus, the data shown above in long format can be converted to
wide format with

> (dfW <- reshape(dfl,direction="wide",idvar="net",v.names="catch",timevar="species"))

net eff temp catch.BKT catch.LKT catch.RBT

1 1 1 17.0 17 45 14

2 2 1 17.3 5 0 13

3 3 1 17.2 0 17 17

8.2 Using cast() and melt() from reshape2

The reshape2 package offers alternatives to using reshape() from base R. To convert from a wide format to
a long format the melt() function is used. As above, the first argument to this function is the wide format
data frame to be “melt”ed. The following other arguments are used

� id.vars=: The variable in wide format that represents the individuals or unit of measurements.

� measure.vars=: The variable(s) in wide format that represent the “multiple measurements” on the
individuals. These variables will ultimately be stacked into a single variable in the resulting long
format.

� variable.name=: This is a name for the new variable in the long format that is constructed so as to
keep track of the original “group” of the multiple measurements in the wide format.

� value.name=: This is a name for the new variable in the long format that is to be constructed from
the varying= variables from the wide format.

The data shown above in wide format can be converted to long format with

> dfL <- melt(dfw,id.vars=c("net","eff","temp"),measure.vars=c('BKT','LKT','RBT'),

variable.name="species",value.name="catch")

13

net eff temp species catch

1 1 1 17.0 BKT 17

2 2 1 17.3 BKT 5

3 3 1 17.2 BKT 0

4 1 1 17.0 LKT 45

5 2 1 17.3 LKT 0

6 3 1 17.2 LKT 17

7 1 1 17.0 RBT 14

8 2 1 17.3 RBT 13

9 3 1 17.2 RBT 17

The dcast() function is used to convert from long to wide format. As with the other functions mentioned so
far, this function begins with the long format data frame to be reshaped. However, in contrast to all of the
previous functions this function uses a formula to identify how the reshaping should occur. The left-hand-
side (LHS; i.e., to the left of the tilde) of the formula contains the variables that represent or are constant
for all individuals. The right-hand-side (RHS) of the formula contains the variable(s) that represent(s) the
“groups” of each individual. Finally, the value.var= argument is used to identify the variable that contains
the multiple measurments for each individual. Thus, the data shown above in long format is converted to
wide format with

> (dfW <- dcast(dfl,net+eff+temp~species,value.var="catch"))

net eff temp BKT LKT RBT

1 1 1 17.0 17 45 14

2 2 1 17.3 5 0 13

3 3 1 17.2 0 17 17

14

Reproducibility Information

Version Information

� Compiled Date: Sat Mar 02 2013

� Compiled Time: 6:53:17 PM

� Code Execution Time: 4.92 s

R Information

� R Version: R version 2.15.2 (2012-10-26)

� System: Windows, i386-w64-mingw32/i386 (32-bit)

� Base Packages: base, datasets, graphics, grDevices, methods, stats, tcltk, utils

� Other Packages: FSA 0.3.4, knitr 0.9, plyr 1.8, reshape 0.8.4, reshape2 1.2.2, rJava 0.9-4, RODBC 1.3-
6, XLConnect 0.2-4, XLConnectJars 0.2-4

� Loaded-Only Packages: car 2.0-16, cluster 1.14.3, digest 0.6.3, evaluate 0.4.3, formatR 0.7, gdata 2.12.0,
gplots 2.11.0, grid 2.15.2, gtools 2.7.0, Hmisc 3.10-1, lattice 0.20-13, multcomp 1.2-16, nlme 3.1-108,
plotrix 3.4-6, quantreg 4.94, relax 1.3.12, sciplot 1.1-0, SparseM 0.96, stringr 0.6.2, TeachingDemos 2.9,
tools 2.15.2

� Required Packages: FSA, RODBC, XLConnect, reshape2 and their dependencies (car, gdata, gplots,
Hmisc, knitr, lattice, methods, multcomp, nlme, plotrix, plyr, quantreg, relax, reshape, rJava, sciplot,
stats, stringr, tcltk, TeachingDemos, utils, XLConnectJars)

15

	The Data Files
	Reading Data Files in R Packages
	Reading from Text Files
	Reading from Excel Files
	using XLConnect
	Using RODBC

	Access
	Final Comments on Reading Data into R
	Creating Subsets of Data Frames
	Changing ``Directions'' of the Data
	Using reshape() from Base R
	Using cast() and melt() from reshape2

	Reproducibility Information

