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Francis (1990) defined back-calculation as,

“... a technique that uses a set of measurements made on a fish at one time to infer its length
at an earlier time or times. Specifically, the dimensions of one or more marks in some hard part
of the fish, together with its current body length, are used to estimate its length at the time of
formation of each of the marks. ... The marks are generally annual rings associated with growth
checks, ...”

Thus, back-calculation is the re-construction of the length of a fish at previous ages from measurements
made on calcified structures.

This vignette requires functions in the FSA package maintained by the author which is loaded into R with

> library(FSA)

All analyses in this document use the West Bearskin Lake Smallmouth Bass (Micropterus dolomieu) data set
used in Weisberg (1993). The West Bearskin Lake Smallmouth Bass data are in the SMBassWB data frame
of the FSA package and are read into R with

> data(SMBassWB)

The analysis in this vignette will focus on only those fish captured in 1990 as found from the year-at-capture
and age-at-capture with

> SMBassWByearclass <- SMBassWB$yearcap-SMBassWB$agecap

> wb90 <- Subset(SMBassWB,yearcap==1990)

This vignette begins with background information about back-calculation techniques in Section 1. Section 2
and Section 3 show how to organize the data for the back-calculation methods and how to use the techniques
to back-calculate previous lengths for all fish. Section 4 is final thoughts about back-calculation methods.

1 Background

1.1 Growth Measurement Types

Two types of measurements can be made on calcified structures. First, a radial measurement is the total
distance from the center of the structure (e.g., focus of scale or nucleus of otolith) to the anterior edge of an
annulus. Second, an incremental measurement is the distance between two successive annuli. Each type of
measurement is shown in Figure 1. Radial measurements are needed for back-calculating fish length. Thus,
incremental measurements must be converted to radial measurements for back-calculation of fish length.

1.2 Terminology

Let L and S represent measurements of body length and scale (or other calcified structure) radius, respec-
tively. Specifically, LC and SC represent the length and scale radius at the time of capture and Li and Si

represent the length and scale radius at age i (Figure 1).
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Figure 1. Depiction of (A) anterior, (AL) antero-lateral, and (L) lateral axes for making radial (Si) or
incremental (Gi) measurements on an age-4 ruffe (left) and an age-3 herring (right). The ruffe was captured
in May, 1989 before new growth had begun; thus, the last increment shown is considered to be an annulus.
The herring was caught in September, 1983 after new growth had begun; thus, the last increment shown is
not a full year’s growth and is labeled as “+” growth.

A back-calculation model is used to estimate Li from known values of Si, LC , and SC . The particular
back-calculation model usualy defines a family of lines for a sample of fish with one line that depends on
LC , and SC used for a particular fish. The family of lines are discussed with each model further below.

The relationship between fish length and scale radius is a key component of back-calculation models. De-
pending on assumptions of the model, a function of the mean scale radius for fish of a given length (i.e.,
E(S|L) ) or a function of the mean length for fish of a given scale radius (i.e., E(L|S)) will be used. These
functions are not required to be linear, but often are, and in their linear form are represented as

E(S|L) = a + bL (1)

E(L|S) = c + dS (2)

where E(S|L) is estimated from the regression of S on L and E(L|S) is estimated from the regression of L
on S.

1.3 Common Back-Calculation Models

1.3.1 Dahl-Lea Model

The first back-calculation model was jointly developed by Knut Dahl and Einar Lea and appeared in Lea
(1910). This model is used rarely now but it provides a good starting point for considering the derivation
and use of other back-calculation models.

The underlying concept of the Dahl-Lea model is that scale growth is in exact proportion to the growth in
length of the fish. With this, the ratio of scale radius at age i to scale radious at capture is the same as the
ratio of fish length at age i to fish length at capture. For example, if the scale was 50% of its captured size
at age-1 then the length of the fish at age-1 should be 50% of its captured length. This concepts is shown
with
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Si

SC
=

Li

LC

Rearrangement of these ratios yields the Dahl-Lea back-calculation model

Li =
Si

SC
LC (3)

The Dahl-Lea model describes a family of straight lines that pass through the origin and each observed
(SC , LC) point. Visually (Figure 2), the estimated length at age i for a particular fish is found by locating Si

along the x-axis, moving vertically until the straight line for that fish is met, and then moving horizontally
to the y-axis. The value located on the y-axis is the back-calculated length for the fish at that previous age.
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Figure 2. Plot of length-at-capture versus scale radius for West Bearskin Lake Smallmouth Bass in 1990.
All four methods of backcalculation are shown for fish 704 (S2 = 3.49804, LC = 218, and SC = 7.44389;
black point and line) with calculational steps shown in red and blue. Fish 701 is shown as the gray line for
comparative purposes.

1.3.2 Fraser-Lee Model

Fraser (1916) was the first to describe but Lee (1920) was the first to formally put forth the back-calculation
model derived from the concept that “the growth increment of the scale is, on the average ..., a constant
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proportion of the growth increment of the fish” (Francis 1990). In practice, Fraser and Lee modified the
Dahl-Lea model by allowing that a fish is already of some length when the scale first forms (i.e., L 6= 0 when
S = 0). Thus, if fish length is adjusted for the length of the fish when the scale forms (i.e., L = c when
S = 0) then the Dahl-Lea ratios become

Si

SC
=

Li − c

LC − c

Rearrangement of these ratios yields the Fraser-Lee back-calculation model

Li =
Si

SC
(LC − c) + c (4)

The constant c is generally taken from one of three sources. First, as was Lee’s intention, c is the length
of the fish at the time of scale formation. Second, which is what Lee actually did, c is the intercept of the
length-scale relationship regression (e.g., from (2)). Third, c may come from published “standards” for a
species (e.g., Carlander (1982)).

The Fraser-Lee model describes a family of lines with an intercept of c that pass through the (SC , LC) point
(Francis (1990); Figure 2).

1.3.3 Scale Proportional Hypothesis

The scale proportional hypothesis (SPH) was named by Francis (1990) but was first recognized by Whitney
and Carlander (1956) when they said

“If the scale was 10 per cent larger when the fish was caught than the average scale for that size
of fish, [then] the scale would be 10 per cent larger than normal throughout the life.”

If “average” and “normal” are considered to be expected values then this hypothesis can be written as

Si

E[S|Li]
=

SC

E[S|LC ]

Assuming that the scale-length relationship is linear then the two expected values in these ratios are computed
by plugging Li and LC , respectively, into the scale-length relationship (i.e., (1)) to produce

Si

a + bLi
=

SC

a + bLC

Solving for Li yields the general SPH back-calculation model

Li =
Si

SC

(
LC +

a

b

)
− a

b
(5)

The linear SPH model produces a family of lines that all have an intercept of −a
b and pass through each

observed (SC , LC) point (Figure 2).

The SPH model is the same as the Fraser-Lee model except that the intercept from (2) is replaced with −a
b .

Further note that the SPH model is the same as the Dahl-Lea model if a = 0.
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1.3.4 Body Proportional Hypothesis

The body proportional hypothesis (BPH) was also named by Francis (1990) and was also first recognized by
Whitney and Carlander (1956) when they said,

“If a fish at time of capture were 10 per cent smaller than the average fish with that size of scale,
[then] the fish would be 10 per cent smaller than the expected length for the size of that scale
throughout life.”

This hypothesis can be written as

Li

E[L|Si]
=

LC

E[L|SC ]

If the length-scale relationship is linear then the expected values can be found by plugging Si and Sc (2) to
get

Li

c + dSi
=

LC

c + dSC

Solving for Li yields the general BPH back-calculation model

Li = LC
c + dSi

c + dSc
(6)

The linear BPH model produces a family of lines that have an intercept of cLC

c+dSC
and pass through each

observed (SC , LC) point (Figure 2). In contrast to the other back-calculation models, the BPH model uses
lines with a different intercept for each fish.

The linear BPH model is the same as the Dahl-Lea model if c = 0.

2 Data Organization & Manipulation

All back-calculation models, with the exception of the Dahl-Lea method, requires the scale measurement
data to be in two formats. The first format, called one-fish-per-line format1, is used to compute the scale-
length (1) and length-scale (2) relationships. The second format, called one-measurement-per-line format2,
is used to back-calculate previous fish length from scale measurements.

2.1 Convert from One-Fish-per-Line to One-Measurement-per-Line

Most files containing growth data are organized in a one-fish-per-line format. In this format, all information
about a single fish, including all of the growth measurements, are stored on a single line in the data file. The
wb90 data frame, a portion of which is shown below, is recorded in one-fish-per-line format.

> head(wb90)

1The one-fish-per-line format is often referred to as “wide” format
2The one-measurement-per-line format is often referred to as “long” format
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species lake gear yearcap fish agecap lencap anu1 anu2 anu3 anu4 anu5 anu6 anu7

8 SMB WB E 1990 482 1 75 1.511 NA NA NA NA NA NA

9 SMB WB E 1990 768 1 75 1.580 NA NA NA NA NA NA

10 SMB WB E 1990 428 1 71 1.487 NA NA NA NA NA NA

65 SMB WB E 1990 478 2 116 1.606 2.736 NA NA NA NA NA

66 SMB WB E 1990 379 2 117 1.596 3.055 NA NA NA NA NA

67 SMB WB E 1990 477 2 111 1.321 2.449 NA NA NA NA NA

anu8 anu9 anu10 anu11 anu12 radcap

8 NA NA NA NA NA 1.511

9 NA NA NA NA NA 1.580

10 NA NA NA NA NA 1.487

65 NA NA NA NA NA 2.736

66 NA NA NA NA NA 3.055

67 NA NA NA NA NA 2.449

> tail(wb90)

species lake gear yearcap fish agecap lencap anu1 anu2 anu3 anu4 anu5 anu6

425 SMB WB E 1990 443 7 283 1.560 2.930 4.082 5.243 6.500 7.834

426 SMB WB E 1990 699 7 289 1.705 3.088 4.278 5.445 6.968 8.023

427 SMB WB E 1990 429 7 279 1.655 3.345 4.404 4.951 5.732 7.002

428 SMB WB E 1990 697 7 294 1.630 2.973 4.157 5.015 6.354 8.454

442 SMB WB E 1990 388 9 300 1.085 2.035 3.227 4.634 5.534 6.532

443 SMB WB E 1990 389 9 329 1.059 2.188 3.551 4.408 5.786 7.582

anu7 anu8 anu9 anu10 anu11 anu12 radcap

425 8.577 NA NA NA NA NA 8.577

426 9.530 NA NA NA NA NA 9.530

427 8.447 NA NA NA NA NA 8.447

428 9.371 NA NA NA NA NA 9.371

442 7.278 8.081 9.381 NA NA NA 9.381

443 8.321 9.464 10.435 NA NA NA 10.435

The partial data file shown above illustrates two important points about organizing data for performing
back-calculations in R. First, each data file must contain enough columns to hold growth measurement for
the first through the maximum observed age in the data set. In this example, that means there must be a
column for the first through the twelfth radial measurements (i.e., the columns labeled with the prefix anu).
For fish younger than the maximum age the columns corresponding to ages older than the observed age
must be filled with NA (for “not available”). Second, the column names containing the growth measurements
should have a common prefix (e.g., anu) followed by the number of the measurement. For example, the
second measurement should be something like anu2. The common prefix will allow efficiency in the analyses
and the numbers allow efficient labeling of the age corresponding to the growth measurement.

Radial scale measurements were recorded in this data file, as is required for the back-calculation techniques.
If the file had contained incremental measurements then it would need to be converted to radial measurements
with gConvert(). The gConvert() function requires the data frame with the incremental measurements as
the first argument, the prefix (in quotes) for the columns containing the incremental measurements in the
in.pre= argument, and the type of measure to convert to in the type= argument (the options are "inc"

or "rad"). The result from gConvert() should be saved to an object that has a different name than the
original data frame (so that the original data frame is preserved). For example, if it were needed, one would
make this conversion with

> wb90A <- gConvert(wb90,in.pre="anu",type="rad")

The back-calculation techniques cannot be applied to data in the the one-fish-per-line format; rather the data
must be “reshaped” to one-measurement-per-line format. Each row in the one-measurement-per-line format
contains all information known about a particular growth measurement (rather than an individual fish).
Thus, information about an individual fish is spread across several rows. Data that is in one-fish-per-line
format can be converted to one-measurement-per-line format with gReshape(). The gReshape() function
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requires the data frame with the radial measurements as the first argument and the prefix for the columns
containing the radial measurements in the in.pre= argument3.

The gReshape() function also needs to know whether “plus growth” was recorded in the data file or not.
“Plus growth” is growth on the margin of the scale that is not complete and does not represent a full year
of growth (see the herring scale in Figure 1). If “plus growth” is present, then the last recorded “radius”
will need to be ignored by gReshape(). If “plus growth” is recorded then the last.plus= argument should
be set equal to the variable name that contains the age-at-capture ("agecap" in the West Bearskin Lake
example). If “plus growth” is not recorded then the last.plus= argument should be set equal to NULL,
which is the default. “Plus growth” was not recorded in the West Bearskin Lake data (as noted by the
age-at-capture being equal to the number of recorded measurements).

The results of gReshape() should be saved to an object. The West Bearskin Lake data was reshaped with

> wb90r <- gReshape(wb90,in.pre="anu")

> head(wb90r)

species lake gear yearcap fish agecap lencap radcap prvAge anu

1 SMB WB E 1990 482 1 75 1.511 1 1.511

2 SMB WB E 1990 768 1 75 1.580 1 1.580

3 SMB WB E 1990 428 1 71 1.487 1 1.487

4 SMB WB E 1990 478 2 116 2.736 1 1.606

5 SMB WB E 1990 379 2 117 3.055 1 1.596

6 SMB WB E 1990 477 2 111 2.449 1 1.321

2.2 Convert from One-Measurement-per-Line to One-Fish-per-Line

As noted in the previous section, most data is originally stored in one-fish-per-line format. However, if the
data is stored in one-measurement-per-line format then it will also be necessary to convert to one-fish-per-line
format. This conversion is rare enough that a specific function for performing it has not been developed.
Fortunately, the conversion can be obtained by careful use of reshape(). The reshape() function requires
the one-measurement-per-line data frame as the first argument, the name of the variable that contains the
“data” (i.e., radial measurements) in the v.names= argument, the age variable in the timevar= argument,
all of the variables that are constant for each fish in the idvar= argument, and the direction="wide"

argument to indicate conversion to what R calls “wide”, but we are calling “one-fish-per-line”, format. For
example, the one-measurement-per-line wb90r data frame is converted to a one-fish-per-line data frame with

> str(wb90r) # to see the variable names

'data.frame': 767 obs. of 10 variables:

$ species: Factor w/ 1 level "SMB": 1 1 1 1 1 1 1 1 1 1 ...

$ lake : Factor w/ 1 level "WB": 1 1 1 1 1 1 1 1 1 1 ...

$ gear : Factor w/ 1 level "E": 1 1 1 1 1 1 1 1 1 1 ...

$ yearcap: int 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...

$ fish : int 482 768 428 478 379 477 472 465 460 451 ...

$ agecap : int 1 1 1 2 2 2 2 2 2 2 ...

$ lencap : int 75 75 71 116 117 111 112 114 115 113 ...

$ radcap : num 1.51 1.58 1.49 2.74 3.06 ...

$ prvAge : int 1 1 1 1 1 1 1 1 1 1 ...

$ anu : num 1.51 1.58 1.49 1.61 1.6 ...

> wb90z <- reshape(wb90r,v.names="anu",timevar="prvAge",

idvar=c("species","lake","gear","yearcap","fish","agecap","lencap","radcap"),

direction="wide")

> head(wb90z)

3This prefix will be "rad" if the radial measurements data frame was created with gConvert()).
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species lake gear yearcap fish agecap lencap radcap anu.1 anu.2 anu.3 anu.4 anu.5

1 SMB WB E 1990 482 1 75 1.511 1.511 NA NA NA NA

2 SMB WB E 1990 768 1 75 1.580 1.580 NA NA NA NA

3 SMB WB E 1990 428 1 71 1.487 1.487 NA NA NA NA

4 SMB WB E 1990 478 2 116 2.736 1.606 2.736 NA NA NA

5 SMB WB E 1990 379 2 117 3.055 1.596 3.055 NA NA NA

6 SMB WB E 1990 477 2 111 2.449 1.321 2.449 NA NA NA

anu.6 anu.7 anu.8 anu.9

1 NA NA NA NA

2 NA NA NA NA

3 NA NA NA NA

4 NA NA NA NA

5 NA NA NA NA

6 NA NA NA NA

The process illustrated in this subsection is NOT needed for the example in the vignette. It is used here
simply to illustrate how to convert one-measurement-per-line data to one-fish-per-line data if needed.4

3 Performing the Back-Calculations

3.1 Acquiring Coefficients from Regression Models

The scale-length (1) and length-scale (2) relationships must be fit using the length-at-capture and scale
radius-at-capture data in the one-fish-per-line format data frame (e.g., wb90). These relationships are fit
with lm() and the coefficients are extracted from the saved lm() object with coef(). These models are fit
and the coefficients are saved to ojects with

> lm.sl <- lm(radcap~lencap,data=wb90)

> ( a <- coef(lm.sl)[1] )

(Intercept)

-1.304

> ( b <- coef(lm.sl)[2] )

lencap

0.03537

>

> lm.ls <- lm(lencap~radcap,data=wb90)

> ( c <- coef(lm.ls)[1] )

(Intercept)

41.65

> ( d <- coef(lm.ls)[2] )

radcap

27.36

3.2 Applying Back-Calculation Models

The back-calculation models are applied to the one-measurement-per-line format data frame (i.e., wb90r) by
writing the model as an equation in R. In this dataframe note that Si is the anu variable, Sc is the radcap

4Note that anu10, anu11, and anu12 in the original wb90 data frame contained all NAs.
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variable, and Lc is the lencap variable. Thus, estimated lengths at previous ages are computed with the
Dahl-Lea model and appended to the wb90r data frame as the dl.len variable with

> wb90r$dl.len <- with(wb90r,(anu/radcap)*lencap)

> head(wb90r)

species lake gear yearcap fish agecap lencap radcap prvAge anu dl.len

1 SMB WB E 1990 482 1 75 1.511 1 1.511 75.00

2 SMB WB E 1990 768 1 75 1.580 1 1.580 75.00

3 SMB WB E 1990 428 1 71 1.487 1 1.487 71.00

4 SMB WB E 1990 478 2 116 2.736 1 1.606 68.07

5 SMB WB E 1990 379 2 117 3.055 1 1.596 61.13

6 SMB WB E 1990 477 2 111 2.449 1 1.321 59.85

Use of with() above simply saves the user from having to type wb90r$ for each variable name in the equation.
Estimated lengths at previous ages computed with the Fraser-Lee, SPH, and BPH models are appended to
the wb90r data frame in unique variables with

> wb90r$fl.len <- with(wb90r,(anu/radcap)*(lencap-c)+c)

> wb90r$sph.len <- with(wb90r,(-a/b)+(lencap+a/b)*(anu/radcap))

> wb90r$bph.len <- with(wb90r,lencap*(c+d*anu)/(c+d*radcap))

> head(wb90r)

species lake gear yearcap fish agecap lencap radcap prvAge anu dl.len fl.len

1 SMB WB E 1990 482 1 75 1.511 1 1.511 75.00 75.00

2 SMB WB E 1990 768 1 75 1.580 1 1.580 75.00 75.00

3 SMB WB E 1990 428 1 71 1.487 1 1.487 71.00 71.00

4 SMB WB E 1990 478 2 116 2.736 1 1.606 68.07 85.28

5 SMB WB E 1990 379 2 117 3.055 1 1.596 61.13 81.02

6 SMB WB E 1990 477 2 111 2.449 1 1.321 59.85 79.05

sph.len bph.len

1 75.00 75.00

2 75.00 75.00

3 71.00 71.00

4 83.31 85.21

5 78.74 79.72

6 76.84 79.46

3.3 Some Summary Calculations

The mean and standard deviation of lengths-at-age estimated with the SPH model, for example, with

> Summarize(sph.len~prvAge,data=wb90r,digits=2)

Warning: To continue, variable(s) on RHS of formula were converted to a factor.

prvAge n mean sd min Q1 median Q3 max percZero

1 1 181 75.27 6.53 59.8 70.9 75.1 79.7 92 0

2 2 178 112.17 10.49 89.9 105.0 112.0 120.0 148 0

3 3 155 145.66 14.26 118.0 136.0 146.0 155.0 194 0

4 4 71 170.88 15.66 140.0 160.0 171.0 179.0 218 0

5 5 64 199.75 17.51 160.0 188.0 199.0 209.0 246 0

6 6 64 234.83 23.38 191.0 220.0 234.0 245.0 298 0

7 7 50 268.56 25.31 214.0 254.0 267.0 283.0 346 0

8 8 2 282.67 27.07 264.0 273.0 283.0 292.0 302 0

9 9 2 314.50 20.51 300.0 307.0 314.0 322.0 329 0

A plot (Figure 3) of back-calculated length-at-age can be constructed with
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> plot(sph.len~jitter(prvAge),data=wb90r,pch=".",

ylab="Back-Calculated Length (mm)",xlab="Age (jittered)")
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Figure 3. Back-calculated length-at-age for West Bearskin Lake Smallmouth Bass.

The mean back-calculated length separated by the age-at-capture of the fish can be found with,

> sumTable(sph.len~agecap*prvAge,data=wb90r,digits=1)

Warning: RHS variable was converted to a factor.

Warning: RHS column variable was converted to a factor.

1 2 3 4 5 6 7 8 9

1 73.7 NA NA NA NA NA NA NA NA

2 77.5 113.3 NA NA NA NA NA NA NA

3 74.1 111.2 148.9 NA NA NA NA NA NA

4 67.5 119.5 159.9 194.0 NA NA NA NA NA

6 76.0 104.8 133.6 168.1 198.0 229.7 NA NA NA

7 77.7 115.1 142.1 168.6 200.4 236.3 269.1 NA NA

9 66.9 96.0 131.8 163.6 195.5 234.6 255.4 282.7 314.5

Finally, a plot (Figure 4) of length-at-age separated by the age-at-capture of the fish can be constructed with

> library(lattice) #required for xyplot

> xyplot(sph.len~jitter(prvAge)|factor(agecap),data=wb90r,pch=".",

ylab="Back-Calculated Length (mm)",xlab="Age (jittered)")
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Figure 4. Back-calculated length-at-age for West Bearskin Lake Smallmouth Bass separated by age-at-
capture.
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4 Further Thoughts

4.1 Choosing The Back-Calculation Method

Francis (1990) argued that either proportional model (i.e, SPH or BPH) should be used to back-calculate
fish length. He further argued that if lengths are back-calculated using both proportional methods then the
difference in results is a measure of the minimum uncertainty in back-calculated lengths. Pierce et al. (1996)
back-calculated the lengths of two species using the Fraser-Lee and both proportional methods and compared
these to observed lengths-at-age. Their results showed little or no difference among the three methods and
they hypothesized that this result was due to the tight body-scale relationship observed for the two species
studied.

4.2 Non-Linear Length-Scale Relationship

The discussion above began with general SPH and BPH models and then showed specific models if the
length-scale or scale-length relationships were linear, which will not always be the case. The SPH and BPH
methods are general to any form of relationship; albeit, with a bit more work. The scale-length or length-scale
relationship should be examined carefully and the functional form that best represents the relationship should
be chosen to develop an appropriate back-calculation model from the general SPH and BPH hypotheses.

For example, suppose that the scale-length relationship followed a power function of the form E(S|L) = aLb.
In this case, the ratios of the SPH hypothesis woud be

Si

aLb
i

=
SC

aLb
C

This can still be solved for Li to get a non-linear SPH model that was attributed to Monasytrsky by Bagenal
and Tesch (1978))

Li = Lc

[
Si

SC

] 1
b

4.3 Lee’s Phenomenon

“Rosa Lee’s” or just “Lee’s” phenomenon is the tendency for back-calculated lengths at a given age in the
same cohort of fish to be smaller as the fish they are computed from get older. It must be remembered that
Lee’s phenomenon is detected by examining lengths at the same age and same cohort back-calculated from
progressively older fish (i.e., captured in later years). Reverse Lee’s phenomenon is the tendency for the
same back-calculated lengths to be larger as progressively older fish are examined.

For example Van Oosten (1928) carefully examined the scales of lake herring from Saginaw Bay Lake Huron.
In particular, he examined the back-calculated lengths, using the Dahl-Lea back-calculation model, of lake
herring from the 1918 and 1919 year-classes captured at various ages. His results (Table 1), although not
tested for statistical significance, illustrate “Lee’s” phenomenon for back-calculated lengths at ages one to
three for both year-classes (Table 1).

Ricker (1969) described four possible explanations of Lee’s phenomenon. The first explanation was that an
incorrect mathematical model was used in the back-calculation of previous lengths. This problem can be
identified by examining the annular measurements on the scales at a given age on the scales of progressively
older individuals from the same cohort (Newman and Weisberg 1987). If Lee’s phenomenon is not evident
in the scales but it is evident in the back-calculated lengths then a problem exists with the model used to
make the back-calculations.
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Table 1. Back-calculated lengths-at-age for Saginaw Bay lake herring from two different year-classes captured
at several different ages.

Back-Calculated Length-at-Age
I II III IV V VI

Age 1918 Year-Class
IV 116 179 214 232
V 114 171 205 229 241
VI 113 166 203 228 247 263

Age 1919 Year-Class
III 127 192 224
IV 122 183 217 236
V 119 179 213 237 251
VI 116 168 199 237 248 267

The remaining explanations involve the appearance of faster-growing but younger-aged individuals of a cohort
in “earlier” samples of the cohort and slower-growing, older-aged individuals in “later” samples. The first of
these explanations is that a biased form of sampling is used. An example, would be the use of gill-nets to
select samples where the faster-growing individuals will be captured by nets at younger ages and the slower-
growing individuals at older ages. The second and third of these explanations are length-selective natural
and fishing mortality. If faster-growing individuals are selectively removed from the population earlier in
the history of the cohort then the older individuals captured in later years will be relatively slow-growing
individuals that will have relatively smaller back-calculated lengths at previous ages.

Duncan (1980) offered another explanation. Annular increments on calcified structures may contract as
calcium is resorbed from hard parts for metabolic purposes. This contraction would make growth and,
subsequently size, appear smaller than what was actual.

4.4 Use With Otoliths

The back-calculation methods described above can be applied to annular measurements on otoliths. However,
slow-growing fish tend to have larger otoliths than fast-growing fish of the same size (CITATIONS). This
leads to an underestimation of previous lengths and the appearance of Lee’s phenomenon. To avoid this
problem, Campana and Jones (1992) proposed a back-calculation model that is similar to the Fraser-Lee
method but uses a biologically-determined intercept that is determined by the mean size of the fish and
the otolith at the larval or juvenile stage. Specifically, biological intercept is measured in the smallest fish
where all larger fish yield a directly proportional linear length-otolith relationship. Very small fish for which
the proportional relationship between length and otolith size has not yet developed are not used in the
development of the back-calculation model. This leads to a method that does not depend on any regression
method and is insensitive to growth-related variations in the length-otolith relationship. The specific back-
calculation model is,

Li = Lc +
(O∗ −Oc)(Lc − L∗)

Oc −Oi

where Oc is the otolith radius at capture, Oi is the otolith radius to the ith annulus, and L∗ and O∗ are the
fish length and otolith radius at the biological intercept.

Otoliths have also been shown to grow continuously during periods when fish size is not growing (CITATION).
This phenomenon tends to make the length-otolith relationship non-linear, but linear within a given age.
Thus, Morita and Matsuishi (2001) developed a back-calculation model that incorporated an age-effect into
the relationship regression.
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4.5 Validation

As with any model, the results from the use of the model should be compared to actual observations to
validate that the model is producing the results for which it was intended. In back-calculation, this means
comparing back-calculated lengths at previous ages to observed lengths when the fish was that age. The
strictest validation is the comparison of the back-calculated lengths of an individual fish to its own previous
lengths. However, this is a difficult process and, thus, the usual form of validation is to show that the average
back-calculated lengths-at-age are the same as the the observed average lengths at those ages. However, as
Francis (1990) correctly points out, this latter method will only detect gross errors with the back-calculation
technique because a sample of one-year-old fish is not the same as a sample of one-year-old fish that will
survive to some later age (see comments above about length-selective mortality). Despite these difficulties
every attempt should be made by a researcher to validate the back-calculation model for the population of
fish being studied.
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