
MODULE 6

LOGISTIC REGRESSION

Module Objectives:

1.
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MODULE 6. LOGISTIC REGRESSION 6.1. LOGIT TRANSFORMATION

Logistic regression models are used when a researcher is investigating the relationship between a binary
categorical response variable and a quantitative explanatory variable.1 Typically, logistic regression is

used to predict the probability of membership in one level of the response variable given a particular value
of the explanatory variable. In some instances, the reverse will be solved for, such that one finds the value of
the explanatory variable where a certain probability of the response variable would occur. Binary2 logistic
regression would be used in each of the following situations:

1. Predict the probability that a species of bat is of a certain subspecies based on the size of the canine
tooth.

2. Predict the probability that a household will accept an offer to install state-subsidized solar panels
given the household’s income.

3. Predict the probability that a beetle will die when exposed to a certain concentration of a chemical
pollutant.

4. Predict the probability of mortality for a patient given a certain “score” on a medical exam.

5. Identify the concentration of a chemical that will result in a 50% mortality rate for an animal.

∆ Binary Logistic Regression: A linear model where a binary response variable is examined with a
quantitative explanatory variable.

6.1 Logit Transformation

The binary response variable in a logistic regression is treated as an indicator variable, where a “success” is
coded as a “1” and a “failure” is coded as a “0.”3 Fitting a linear regression to this response variable plotted
against the quantitative explanatory variable immediately exposes two problems (Figure 6.1). First, the
linearity (and homoscedasticity) assumptions of linear regression are not met. Second, predicted probabilities
from this model can be less than 0 and greater than 1, even within the domain of the explanatory variable.
Clearly, a linear regression cannot be used to model this type of data.

Logistic regression is focused on the probability of “success” (pi) at a given value of the quantitative explana-
tory variable (xi). These probabilities are often calculated within “windows” of the xi, as seldom are there
many response observations at each given explanatory observation. For example, the probability of “success”
may be calculated for the data shown in Figure 6.1 within “windows” that are 2.5 units wide on the x-axis
(Figure 6.2). From this, it is seen that a model for the probability of “success” is clearly non-linear.

The odds of an event occurring is the probability of that event occurring divided by the probability of that
event not occurring. Thus, the odds of “success” is computed with

oddsi =
pi

1− pi

Thinking in terms of odds takes some practice. For example, an odds of 5 means that the probability of a
“success” is five times more likely than the probability of a “failure,” whereas an odds of 0.2 means that
the probability of a “failure” is five times (i.e., 1

0.2= 5) more likely than the probability of a “success.”
Furthermore, it is instructive to note that an odds of 1 means that the probability of a “success” and

1Strictly, a logistic regression can be used with a categorical explanatory variable or multiple explanatory variables of mixed
type. These notes will focus on the simplest situation where there is only one quantitative explanatory variable.

2This qualifying statement is needed as not all logistic regressions have a response variable with only two levels.
3Indicator variables were discussed in great detail in Section 5.1.
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Figure 6.1. Plot of the binary response variable, as an indicator variable, versus a quantitative explanatory
variable with the best-fit linear regression line super-imposed. Note that darker points have more individuals
over-plotted at that coordinate.
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Figure 6.2. Plot of the binary response variable, as an indicator variable, versus a quantitative explanatory
variable with the vertical lines representing the “windows” in which the probability of “success” (blue pluses)
were calculated. Note that darker points have more individuals over-plotted at that coordinate.

a “failure” are equally likely. Finally, note that odds are bounded below by 0 (i.e., negative odds are
impossible) but are not bounded above (i.e., odds can increase to positive infinity). A plot of the odds for
the same data shown in Figure 6.3 illustrates these characteristics of odds.

While the plot of the odds of “success” versus the quantitative explanatory variable is not linear, it does have
the characteristic shape of an exponential function. Exponential functions are “linearized” by transforming
the response variable with natural logarithms (see Module 4). The natural log of the odds is called the
“logit” transformation. Thus,
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Figure 6.3. Plot of the odds of a “success” at various “windows” of the quantitative explanatory variable.

logit(pi) = log

(
pi

1− pi

)

and the plot of logit(pi) versus the explanatory variable will be linear (Figure 6.4).
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Figure 6.4. Plot of the logit transformed probability of a “success” (i.e., log odds of a “success”) at various
“windows” of the quantitative explanatory variable.
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6.2 Logistic Regression

6.2.1 The Model

The logit transformation is a common transformation for “linearizing” the relationship between the prob-
ability of “success” and the quantitative explanatory variable. The logit transformation is the basis for a
logistic regression, such that the logistic regression model is

log

(
pi

1− pi

)
= α+ βxi (6.2.1)

where α is the “intercept” parameter and β is the “slope” parameter.

6.2.2 Intepreting the Slope Coefficient

The slope for any linear regression represents the average change in the response variable for a unit change
in the explanatory variable. In logistic regression, this corresponds to the average (additive) change in the
log odds of a “success” for a unit change in the explanatory variable, or

β = log(ODDS(Y |X + 1))− log(ODDS(Y |X + 1))

= log

(
PR(Y |X + 1)

1− PR(Y |X + 1)

)
− log

(
PR(Y |X)

1− PR(Y |X)

)

where ODDS(Y |X) generically represents the odds of and PR(Y |X) generically represents the probability
of Y (the response variable) for a given value of X (the explanatory variable). A change in the log odds is
not readily interpretable. However, back-transforming the slope, i.e.,

eβ =
ODDS(Y |X + 1)

ODDS(Y |X)
=

PR(Y |X+1)
1−PR(Y |X+1)

PR(Y |X)
1−PR(Y |X)

results in a measure of the multiplicative change in the odds of a “success” for a unit change in the
explanatory variable. For example, β̂=0.2 would mean that the log odds of a “success” increases by 0.2, on
average, for a one unit increase in X. The corresponding back-tranformed slope, e0.2=1.22, indicates that
the odds of a “success” are 1.22 times greater for a one unit increase in X. The back-transformed slope
does not indicate what the odds are, only that the odds are 1.22 times greater with an increase of one unit
in the explanatory variable.

Nearly all software will provide a “default” significance test for the slope. This significance test tests H0 :
β = 0 versus HA : β 6= 0. Thus, this significance tests determines, with a one unit increase in the explanatory
variable, if the (additive) change in log odds of “success” is zero or the (multiplicative) change in odds is
one. The probability does not change if the (additive) change in log odds is zero or, equivalently, if the
(multiplicative) change in odds is one. Thus, the default hypothesis test for the slope determines if the log
odds or the odds of “success” is related to the explanatory variable.

6.2.3 Predictions

Inserting a given value of the explanatory variable into the fitted logistic regression model, i.e., into Equation
(6.2.1), results in a predicted log odds of “success.” Back-transforming this result gives a predicted odds of
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“success”, i.e.,

pi
1− pi

= eα+βxi (6.2.2)

The predicted odds equation, Equation (6.2.2), can be algebraically solved for pi to provide a formula for
predicting the probability of “success”, i.e.,

pi =
eα+βxi

1 + eα+βxi
(6.2.3)

Equation (6.2.2) can also be algebraically solved for xi to provide a formula for the value of X that corre-
sponds to a given probability of “success”, i.e.,

xi =
log
(

pi
1−pi

)
− α

β
(6.2.4)

6.2.4 Variability Estimates

Standard errors or confidence intervals for the parameters of the logistic regression model can be computed
with normal distribution theory. However, this theory does not hold for all logistic regression models. In
addition, methods for computing confidence intervals for predicted probabilities or for predicted values of X
for a particular probability are not well formed. Bootstrapping provides one method for producing confidence
intervals for these parameters.

In bootstrapping, B (re)samples of the same size as the original sample are produced with replacement from
the original sample. The logistic regression model is fit to each of these new (re)samples and the estimates of
interest (i.e., slope, intercept, predicted probability, etc.) are computed each time. The estimates from each
(re)sample are then aggregated and an approximate 95% confidence interval is computed as the values of the
estimate that have 2.5% of all bootstrapped values smaller and greater (i.e., find the bounds that contain
the most common 95% of bootstrapped values). Bootstrap confidence intervals are computer intensive, but
provide an interval that does not depend on the shape of the underlying sampling distribution.

6.3 Logistic Regression in R

Bliss (1935) examined the mortality response of beetles to various concentrations of gaseous carbon disulphide
(mg/liter). The concentration and whether or not the beetle survived the exposure to that concentraton was
recorded for each beetle and stored in Bliss.csv (view, download, meta). The levels for the outcome variable
will be coded as “0”s and “1”s in the order that they are listed with levels(). Thus, “dead” will be coded
with “1”s and the proportion of “successes” will be the proportion of beetles that were dead at the end of
the exposure to gaseous carbon disulphide.

> d <- read.csv("Bliss.csv")

> str(d)

'data.frame': 481 obs. of 2 variables:

$ outcome: Factor w/ 2 levels "alive","dead": 2 2 2 2 2 2 1 1 1 1 ...

$ conc : num 49.1 49.1 49.1 49.1 49.1 49.1 49.1 49.1 49.1 49.1 ...
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> levels(d$outcome)

[1] "alive" "dead"

6.3.1 Fitting the Logistic Regression Model

The logistic regression model is fit with the general linear model function, glm(), which takes a formula of
the form factor∼quantitative where factor represents the binomial response variable and quantitative

represents the quantitative explanatory variable as the first argument and the data.frame that contains these
variables in the data= argument. In addition, family=binomial must be included to force glm() to fit a
logistic regression model. The results of glm() should be saved to an object. Submitting the saved glm

object to summary() provides basic model summary results.

> glm1 <- glm(outcome~conc,data=d,family=binomial)

> summary(glm1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.82300 1.28955 -11.49 <2e-16

conc 0.24942 0.02139 11.66 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 645.44 on 480 degrees of freedom

Residual deviance: 368.62 on 479 degrees of freedom

AIC: 372.62

Number of Fisher Scoring iterations: 5

From these results, the estimated intercept is -14.82 and the estimated slope is 0.249. In addition, it
is apparent that there is a signifcant relationship between the log odds of death for the beetles and the
concentration of the calcium disulphide (slope p < 0.00005).

The fit of the logistic regression model is seen using fitPlot() with the saved glm() object as the first
argument. The number of “windows” for which proportions of successes are computed can be defined with
breaks=, which can be set to a single number or a sequence of numbers that identify the endpoints of the
“windows.”4 For example, the code below constructs a plot with “windows” that begin at 45 and step every
5 units to 80 (Figure 6.5).5

> par(mar=c(3.5,3.5,1,3), mgp=c(2,0.75,0),las=1,tcl=-0.2)

> fitPlot(glm1,breaks=seq(45,80,5),xlim=c(45,80),

xlab="Concentration",ylab="Proportion Dead")

Confidence intervals from normal theory are extracted from the saved glm object to confint().

> confint(glm1) # normal theory

Waiting for profiling to be done...

4This sequence is best created with seq() where the three argument are the starting, ending, and step value of the sequence.
5Note that the use of par() here is to make the plot look like other plots in the book and is likely not needed in general use.
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Figure 6.5. Plot of the binary outcome variable versus the concentration of calcium disulfide with the
probability of death (blue pluses) calculated at every five units of concentration and the fitted logistic
regression model superimposed (in red). Darker points have more individuals over-plotted at that coordinate.

2.5 % 97.5 %

(Intercept) -17.4924161 -12.4235445

conc 0.2096978 0.2937584

Bootstrap samples are taken by sending the saved glm object to bootCase() and saving the results to an
object.6 The bootstrap samples are taken and the first six rows of results are shown below.

> bc1 <- bootCase(glm1) # bootstrapping, be patient!

Warning: ’bootCase’ is deprecated.

Use ’Boot’ instead.

See help("Deprecated") and help("car-deprecated").

> head(bc1)

(Intercept) conc

[1,] -14.48441 0.2438393

[2,] -13.73752 0.2354945

[3,] -15.30474 0.2607897

[4,] -15.81387 0.2630108

[5,] -16.28585 0.2721009

[6,] -13.77281 0.2324942

The bootstrap confidence intervals are extracted from the bootCase object with confint().

> confint(bc1)

95% LCI 95% UCI

(Intercept) -17.727040 -12.7237878

conc 0.213892 0.2964944

Thus, the normal theory provides a 95% confidence interval for the slope from 0.210 to 0.294, whereas the
bootstrap estimates are from 0.214 to 0.296. The confidence intervals for the slope from these two methods

6bootCase() is from the car package.
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are not widely disparate in this example because the sampling distribution of the slope is approximately
normal (Figure 6.6). The distributions of the parameters from the bootstrap samples (Figure 6.6) are
constructed from the bootCase() object with hist().

> hist(bc1)
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Figure 6.6. Histograms of the logistic regression parameter estimates from the bootstrapped samples.

6.3.2 Predictions

The predicted probability of death given a value of the concentration of calcium disulphide is found with
predict(), similar to what was shown in previous modules. The one difference is that if one wants to
predict the probability, rather than the log odds, then type="response" must be included. For example,
the predicted probability of death at a concentration of 70 mg/l is computed below.

> predict(glm1,data.frame(conc=70),type="response")

1

0.9331487

Unfortunately, confidence intervals for this prediction can not be constructed with predict(). Bootstrap
confidence intervals, however, can be constructed with a bit of work. First, one must create a small function
that computes the predicted probability “by hand”, i.e., code Equation (6.2.3) with

> predProb <- function(x,alpha,beta) exp(alpha+beta*x)/(1+exp(alpha+beta*x))

A quick check of this function,

> predProb(70,coef(glm1)[[1]],coef(glm1)[[2]])

[1] 0.9331487

shows that it provides the same prediction as found with predict(). Now use predProb() to predict the
probability given the parameter estimates for each bootstrap sample (by realizing that the intercepts are
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in the first and the slopes are in the second column of bc1). These predicted probabilities should be saved
to an object that can be submitted to quantile() to compute the quantiles that represent the confidence
bounds. These calculations are illustrated with

> p70 <- predProb(70,bc1[,1],bc1[,2])

> quantile(p70,c(0.025,0.975))

2.5% 97.5%

0.9033577 0.9591189

Thus, one is 95% confident that the predicted probability of death for beetles exposed to 70 mg/l calcium
disulphide is between 0.903 and 0.959.

A similar process is used to predict the concentration where 50%, for example, of the beetles will have died
(in this case, Equation (6.2.4) must be coded as a function). For example,

> predX <- function(p,alpha,beta) (log(p/(1-p))-alpha)/beta

> x50 <- predX(0.5,bc1[,1],bc1[,2])

> quantile(x50,c(0.025,0.975))

2.5% 97.5%

58.34560 60.45673

Thus, one is 95% confident that the predicted concentration where 50% of the beetles would be dead is
between 58.3 and 60.5.
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